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Abstract

Optic Flow algorithms are useful in problems such as computer vision, nav-

igational systems, and robotics. However, current algorithms are computationally

expensive or lack the accuracy to be effective compared with traditional navigation

systems. Recently, lower accuracy inertial navigation systems (INS) based on Micro-

electromechanical systems (MEMS) technology have been proposed to replace more

accurate traditional navigation systems. An Optic Flow algorithm can be created

that is, unlike GPS, not susceptible to jamming or spoofing. Our long term goal is

to use a robust Optic Flow algorithm in conjunction with a MEMS INS to create a

more accurate and less expensive MEMS INS navigational system.

We propose a new wavelet-based technique for motion analysis based on feature

extraction. With the use of the redundant discrete wavelet transform and morpho-

logical processing, dominate image features are efficiently extracted from the image,

allowing for a robust and computationally effective optic flow algorithm. These fea-

tures are used to guide the registration; the image is broken into subsections based

on the spatial location and extent of the detected features. These subsections are in-

corporated into optic flow algorithms to create local estimates of image motion. We

verify the accuracy of our algorithm by analyzing actual aircraft video with known

position and inertial references.

x



FEATURE GUIDED IMAGE REGISTRATION

APPLIED TO PHASE- AND WAVELET-BASED OPTIC FLOW

ALGORITHMS

I. Introduction

1.1 Problem Statement

Image registration is used in a variety of applications such as computer vision,

pattern recognition, and target location and definition. It is the process of taking

two or more images and determining the best correlation between them to find the

translation, rotation, or spatial characteristics of the object.

The military has a need to process large quantities of image data. We look at a

specific application in support of the Munitions Directorate of the Air Force Research

Lab (AFRL) at Eglin AFB, FL. Current Microelectromechanical systems (MEMS)

inertial navigation system (INS) technology lacks the performance of conventional

aircraft INS. One way to improve MEMS INS performance is to use image data of

ground scenes. This method involves analyzing topographical data to identify and

track objects and estimate their relationship to the weapon platform. It enables

the system to calculate parameters needed to assist the INS. This thesis focuses on

algorithms for object recognition, tracking, and estimation from all viewpoints. The

long term goal of our research is to obtain an accurate, robust, and efficient algorithm

that registers images and then calculates the velocities and the displacements of

objects within the image. Various optic flow algorithms have been developed to fit

this need, yet none have met all the requirements.

This research will allow AFRL at Eglin AFB to realize the potential of ground

scene images for MEMS INS as opposed to the poor-performing MEMS gyros cur-
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rently in use. If found to be a viable solution, our research will be used for countering

electronic warfare measures such as jamming or spoofing of the global positioning

navigation system (GPS).

1.2 Scope

Previous optic flow algorithms either lacked the accuracy or computational

efficiency necessary for a real time navigation system. We analyze more accurate

techniques and try to implement them in a less computationally intensive manner.

This analysis is done with wavelet-based feature extraction.

Our research demonstrates the robustness, accuracy, and efficiency of our algo-

rithm by application to synthetic and video stream data. The strengths and weakness

will be explored so that we may gain a better understanding of where improvements

need to be made. Finally, future research efforts are discussed.

1.3 Thesis Organization

Chapter Two introduces the basic theory of the concepts we use in the devel-

opment of our algorithm. First, an overview of image registration and the criteria

for accurate registration are provided. We then discuss why wavelets meet these

criteria. The basic theory of wavelets is discussed along with how the redundant

discrete wavelet transform and morphological processing best fit our needs.

Chapter Two also gives an overview of optic flow and how displacements can

be calculated with such a technique. A brief overview of different approaches is

provided. We go into further detail on the Wavelet- and Phase-Based Optic Flow

algorithm, which are used in this thesis. A brief overview of Gabor filters is given,

since they are used in the design of one of the tested algorithms.

Chapter Three begins with an overview of how we use wavelets in our feature

extraction process. First, we analyze the redundant discrete wavelet transform at

various scales to ensure persistency of our features. Next, we develop thresholding
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and masking criteria for the wavelet subbands. We explain how the various subbands

are combined with morphological processing to create and characterize objects. Re-

gions of interest are created based on these objects. The image is then broken into

subimages based on the regions of interest. These subimages become the inputs for

the two algorithms we validate.

Chapter Three continues with the methodology of both Phase- and Wavelet-

Based Optic Flow algorithms, along with specific parameters needed for valid esti-

mates. Finally we discuss the velocity calculations and the components necessary

for such calculations.

Chapter Four describes our validation study and how our Feature Guided al-

gorithm performs against the original Phase- and Wavelet-Based Optic Flow algo-

rithms. Synthetic data with additive white Gaussian noise along with an actual

video stream sequence are used.

Finally, in Chapter Five we discuss our contributions along with recommenda-

tions for future research efforts.
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II. Background

2.1 Introduction

This thesis uses wavelets and morphology to extract features for image regis-

tration and motion analysis. Thus, we begin our discussion with an overview of the

problem. We discuss the basic components of image registration and how wavelets

are the best fit for our purposes. We then consider the specific properties of wavelets

and morphological processing that are useful in our algorithm. Next, we present the

basic theory of optic flow. We show our reasoning for using phase- and wavelet-based

optic flow algorithms and explain the fundamentals behind such algorithms.

2.2 Background of Our Problem

Current Microelectromechanical systems (MEMS) inertial navigation system

(INS) technology lacks the performance of conventional aircraft INS. One way to

improve INS performance is to use image data of ground scenes. This method in-

volves analyzing topographical data to identify and track objects and estimate the

relationship of these objects to the weapon platform. This procedure enables the

system to calculate parameters needed to assist the INS. A key aspect of this thesis

focuses on algorithms for object recognition, tracking, and estimation from all view-

points. The long term goal of our research is to develop an accurate, robust, and

efficient algorithm that registers images and can then calculate the velocities and

the displacements of objects within the image. The first step in reaching this goal is

to ensure that proper image registration takes place.

2.3 Image Registration

Image registration can be defined as the process in which two or more images,

acquired from one or more sensors, are compared to calculate differences in rotation,

translation, scalar properties, etc. For our purposes, we refer to the original image as
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the reference image and the second image as the image or the sequential image. The

primary difference between the two images is translation. Clearly, proper registration

is a required first step for any comparison-based image processing.

2.3.1 Components of Image Registration. Brown [4] cites four major com-

ponents necessary for proper image registration. They are: feature space, search

space, the search strategy, and the similarity metric.

1. Feature Space

The feature space contains the characteristics that are extracted from the ref-

erence and sequential images to calculate the differences in the sequence. Tra-

ditional characteristics include edges, contours, intersections of lines, etc. It is

imperative that the feature space be well defined so that proper image registra-

tion can take place [24]. A well defined feature space should have robustness

and generality [24]. Robustness is needed so that the same feature is extracted

regardless of warping that may occur in consecutive images. Warping can be

caused by noise, translation, rotation, etc. Generally, it is also important to

ensure that even if our algorithm is used for different applications, such as

computer vision, navigational data, etc., we are able to extract dominant fea-

tures. Li and Zhou [20] have proposed additional criteria for selecting proper

features. Their primary criterion is consistency. Consistency is defined in four

parts: features are at the same locations in each image, located in high con-

trast regions, proportionally distributed throughout the image, and are unique

in their surrounding areas.

2. Search Space

The search space contains the set of potential transformations that define the

correspondence between the two images. Three common transformations are

rigid body, affine, and polynomial. Throughout this thesis we work on a data

set that uses rigid body search spaces composed of translation, scaling, and
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rotation of the input image(s). In this research, we are particularly interested

in translation.

3. Search Strategy

The search strategy determines the set of allowable deformations. If the images

are expected to translate, then the search strategy is to compare the image(s)

with all possible translations of the reference [4].

4. Similarity Metric

The similarity metric is used to determine how well the reference and the

image(s) match for the chosen search space. Correlation is one of the most

common metrics [4].

2.3.2 Image Registration Techniques. Previous work has shown that wavelet-

based techniques for image registration are better suited than Fourier-based tech-

niques [1, 4, 5, 6, 15, 16, 17, 18, 19, 20, 23, 26]. There are several properties that

make wavelets a natural choice for our image registration algorithm. Traditionally,

image analysts have manually analyzed multiple image sequences to extract the dif-

ferences of persistent objects. With the use of the wavelet transform, the maxima of

the wavelet coefficients can be computed automatically [15]. It has been documented

that the correlation between wavelet coefficients and a set of images is greater than

the correlation between the images themselves, which makes wavelets a more accu-

rate transform than previous methods [29]. Locality allows the wavelet transform

to simultaneously convey frequency and time information, unlike the Fourier-based

methods which carry exact frequency information, but with spatial information en-

tirely embedded in the phase. Finally, persistence is the last property important for

our algorithm. True features are persistent across scales of the wavelet transform.

This causes coefficients of large magnitude to be at the same spatial location in each

scale. Clearly, because of these properties, wavelets are well suited for registration.

Thus, we present a brief background on the wavelet transform.
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2.4 Wavelet Transform

The wavelet transform, or more specifically the two-dimensional discrete wavelet

transform, is the basis for our feature extraction in the image registration process. It

is necessary to use the two-dimensional discrete wavelet transform because we work

with two-dimensional images. The discrete wavelet transform can be implemented

by using cascading filters. Figure 2.1 shows the filter bank implementation of the

one-dimensional discrete wavelet transform for three iterations. The H(z) represents

the lowpass filter while the G(z) represents the highpass filter. A downsampling

of two takes place after each of the filters. The two-dimensional discrete wavelet

transform is performed in a separable fashion: the one-dimensional discrete wavelet

transform is applied to each row of the image, then to each column.

H(z)

G(z)

2

2

H(z)

G(z)

2

2

H(z)

G(z)

2

2

d1(n)

c1(n)

d2(n)

c2(n)
c3(n)

d3(n)

co[n]

f[n]

Figure 2.1. Filter Bank Representation of the Discrete Wavelet Transform.

The purpose of the two dimensional discrete wavelet transform is to dyadically

decompose the image into four subbands. Each subband is one fourth the size of

the original image; a downsizing of two along the rows and two along the columns

takes place. Each of the subbands preserves certain characteristics of the original

image. For example, see Figure 2.2 (a) for an original image and (b) the wavelet

transform of that image. We use the following notation to define the subbands. The

first letter stands for the type of filter applied to the rows, the second letter refers

to the filter that is applied along the columns. L stands for a lowpass filter, and

H stands for a highpass filter. The upper left is the Low-Low (LL) subband of the

image, which forms a coarse approximation to the original image. The upper right
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is the High-Low (HL) subband, which preserves the vertical edges. The bottom left

is the Low-High (LH) subband, which preserves the horizontal edges. Finally the

bottom right is the High-High (HH) subband, which preserves the 45 degree edges.

These four subbands are easily distinguished in Figure 2.2(b) and Figure 2.3. Also,

seen in Figure 2.3 are the multiple scales of the discrete wavelet transform, which

are formed by iterating on the LL subband of the previous scale.
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250

300

350

400

450

100 200 300 400 500 600 700
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100

150

200

250

300
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(a) (b)

Figure 2.2. Discrete Wavelet Transforms. (a) The Original Image. (b) One Itera-
tion of the Discrete Wavelet Transform.

For the purpose of our feature extraction, we take more than one iteration of the

two-dimensional discrete wavelet transform to ensure robustness of the features, since

significant features persist across scales. However, there is a point of diminishing

returns. As more iterations are taken we decompose a coarser image each time. It can

also be seen in Figure 2.3 that the subbands decrease in size with each decomposition.

At some point the image becomes too coarse for reliable information extraction.

The two-dimensional discrete wavelet transform is created using downsampling.

This causes the transform to be one-to-one, but shift varying. A shift invariant

transform is crucial for algorithms that estimate translation. For this reason we

chose the redundant discrete wavelet transform (RDWT), which still decomposes

the image into various scales, yet it is shift invariant and each subband preserves
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Low-Low
Subband

High-Low
Subband

High-High
Subband

Low-High
Subband

Figure 2.3. Three Iterations of the Discrete Wavelet Transforms.

the size of the original image [5]. The RDWT does have some limitations; it is not

scale invariant, and it is slower than the discrete wavelet transform. However, for

the purpose of our algorithm, these limitations are irrelevant (we are not analyzing

scale decompositions) or negligible (we only use three iterations of the transform).

Figure 2.4 shows the implementation of both the discrete wavelet transform (a)

and the redundant discrete wavelet transform (b). Notice that the discrete wavelet

transform discards information through downsampling, which is why it is not shift

invariant. If we were to take the discrete wavelet transform from a different start-

ing point, we would gather different data; this is not the case with the redundant

discrete wavelet transform, since there is no downsampling. The structures of the

two transforms are similar, but it is clearly seen in the redundant discrete wavelet

transform that the number of wavelet coefficients increases with each iteration.
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Figure 2.4. The Discrete Wavelet Transforms. (a) Implementation of the Discrete
Wavelet Transform. (b) Implementation of the Redundant Discrete
Wavelet Transform which increases in size.
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2.5 Morphology

Morphology, more specifically morphological image processing, is the classifi-

cation of pixel values in an image using shapes. The shape or the structural element

is used to define how the pixels are grouped. For example, our algorithm decomposes

and binary thresholds the image. We are left with only ‘1’s and ‘0’s. We wish to

find groups of ‘1’ values and combine them into objects. We are able to do this by

finding the connectivity of the ‘1’ values. That is, if a ‘1’ is surrounded by a specified

number of ‘1’s, they are grouped together into an structural element. A shape is

then applied to these structural elements to form an object. The background (‘0’s)

can be defined in a similar process. Certain characteristics can then be determined

for each object. These characteristics are, but are not limited to, centroids, bound-

ing boxes and areas. The centroid is the x and y coordinate that defines the center

of an object, while the bounding box defines the smallest rectangular region that

encompasses the feature. Area defines the actual number of pixels in the feature.

2.6 Optic Flow Overview

Optic flow is defined as the observation of luminance of objects over time.

Clearly, image registration can be considered a subtask of optic flow calculations.

In general, optic flow is used to find the motion or velocity of objects. For the

purpose of our algorithm, we assume that objects in the scene are stationary and

that the sensor is moving. Optic flow is currently used to determine motion in many

applications, such as computer vision. One of its main disadvantages is that it suffers

from the ambiguous constraint that the image must be sufficiently textured. That

is, without sufficient texture, invalid estimates are calculated. Unfortunately, no

standard definition of texture exists. One of the main contributions of our algorithm

is that it defines texture within the content of feature extraction.

Referring to Figure 2.5, point P(t) is our initial sensor starting point. This

point moves to P(t+dt) at time dt, and the corresponding velocity vector is V=dP/dt.
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The projection of our points onto the corresponding image plane are p(t) and

p(t+dt). Thus, the apparent x and y velocities in the image plane are u=dx/dt

and v=dy/dt, respectively. The values u(x,y) and v(x,y) define the motion field or

optic flow [14], as shown in Figure 2.6.

P(t)
P(t+dt)

(dx,dy)
p(t) p(t+dt)

Rigid Body

dP

Figure 2.5. Graphical view of the Motion Field.

Different techniques are used to estimate u and v at the x,y points. Some

general assumptions are stated at this point. It is assumed that illumination (I)

changes little with respect to time and that u and v are relatively small, where I is

defined, as seen in Figure 2.6, with respect to time as

I(x+ u(x, y), y + v(x, y), t). (2.1)

Thus we have

I(x+ u(x, y), y + v(x, y), t) ≈ I(x, y, t− 1), (2.2)

which can be further approximated by

I(x+ u(x, y), y + v(x, y), t) ≈ I(x, y, t) + u(x, y)dI/dt+ v(x, y)dI/dy. (2.3)
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Combining Equation 2.2 and Equation 2.3, we have

I(x, y, t− 1) = I(x, y, t) + u(x, y)dI/dt+ v(x, y)dI/dy, (2.4)

which is the fundamental equation of motion. It can be furthered simplified, and it

is more commonly written as

I(x, y, t)− I(x, y, t− 1) + u(x, y)dI/dt+ v(x, y)dI/dy = 0. (2.5)

While this equation gives us a constraint per pixel, u and v are two unknowns

that cannot be recovered from the equation unambiguously. Thus, numerous ap-

proaches have been developed to estimate these values.

I(x,y,t-1)
I(x,y,t)

(u,v)

(a) (b)

Figure 2.6. Image plane with respect to time. (a) Motion Field at time = t-1. (b)
Motion Field at time = t.
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2.7 Optic Flow Techniques

Several optic flow techniques have been developed [2, 8, 9, 13, 21, 22, 25, 27, 28].

Most optic flow algorithms focus on either efficiency or accuracy. Both are important

for real world applications, yet, previous algorithms struggle to find a happy medium

between them [12]. If accuracy is the goal, then the algorithm disregards the need

for efficiency (and vice versa). Today, optic flow is moving towards a more accurate

and computationally effective algorithm. In a recent review by Barron et al., nine

different techniques were evaluated [3]. These techniques fell into the categories of

differential, matching, energy-based, and phase-based. The phase-based algorithm

proved to be among the more accurate [3]. Fleet and Jepson have demonstrated

that phase contours are more stable with small translations in the images, because

the phase contours are more robust with smooth shading and light variations [3, 7].

Therefore, Phase-Based Optic Flow is one of the reference technique in this research.

2.7.1 Phase-Based Optic Flow Technique. The Phase-Based Optic Flow

Technique used here is based largely on Gautama and Van Hulle [10]. Gautama and

Van Hulle take a similar approach to that of Fleet and Jepson [7], except that they

spatially filter the input data using a bank of quadrature pair Gabor filters instead

of spatiotemporal filtering. Also, Fleet and Jepson use instability as criteria for de-

termining valid phases, whereas Gautama and Van Hulle use non-linearity as their

criteria, assuming that phase estimates that are unstable will also be non-linear.

Gautama and Van Hulle break their algorithm down into three stages: compute

phase response, examine the reliability of components, and calculate velocity com-

ponents.

1. Compute Phase Response

The phase response is computed for the image sequence by spatially filtering

each image with a set of quadrature Gabor filter pairs at every frame. The tem-
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poral phase gradient for every filter at every spatial location is also computed.

The component velocity is then derived from the temporal phase gradient.

Gabor filters have the benefits of Fourier analysis and also give locality infor-

mation (like wavelets). Gabor filters are harmonic functions which are similar

to Fourier basis functions, but they are limited to certain spatial locations

due to their characteristic Gaussian damping terms. This allows them to cap-

ture spatial information with the real part of the equation, while the complex

part captures frequency information. The two-dimensional Gabor function is

represented in polar coordinates by

G(ρ, θ) = exp (−iω(θ − θo)) exp

(

(ρ− ρo)
2

σ2
ρ

)

exp

(

−(θ − θo)
2

σ2
θ

)

, (2.6)

where

σ =
2β + 1

(2β − 1)2π
√

f 2
x + f 2

y

. (2.7)

Here β is the number of octaves for the constant bandwidth and fx and fy are

the center frequencies.
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(a) (b)

Figure 2.7. Gabor Filter designs. (a) Real part of the image. (b) Imaginary part
of the image.
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As shown in Figure 2.7 and Equation 2.6, the output of the quadrature Gabor

filter pair has both real and imaginary parts, where the imaginary part contains

the phase information. The temporal phase gradient, which was found using

Fleet and Jepson’s [7] assumption, provides the component velocities.

2. Reliability of Components

The reliability of components is estimated using phase non-linearity. Previous

work by Fleet and Jepson [7] focused on the instability of phase information.

The assumption here is that areas of instability are not likely to have phase lin-

earity. To measure non-linearity, a linear least-squares regression is performed

on the computed phase, then the mean square error is divided by the absolute

value of the estimated gradient as a metric to ensure linearity.

2.7.2 Wavelet-Based Optic Flow. From the basic definition of optic flow,

there are many ways, besides phase-based calculations, that displacements can be

computed. We chose to apply an additional wavelet-based algorithm to our method-

ology in Chapter Three. The characteristics discussed in Section 2.4 suggest that

wavelets are ideal for this situation. Although wavelets have not traditionally been

considered for optic flow, there are potential benefits in attacking the optic flow

problem from a different perspective. We use Brown’s Wavelet-Based Translation

algorithm [5] to gather our estimates for pixel displacements, and then we use the

displacement values to calculate our velocities.

2.8 Calculate the Full Velocity

Once the image displacements and component velocities are calculated by fur-

ther Phase- or Wavelet-Based analysis, the full sensor velocity must be calculated.

Component velocities are naturally noisy and are given a constraint line for the best

fit.
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2.9 Summary

This chapter documented the reason that wavelets are a natural choice for im-

age registration problems. The basic properties inherent to wavelets are necessary

for extracting proper features for our algorithm. A general background on wavelets,

the discrete wavelet transform, and the redundant discrete wavelet transform are

given to provide a deeper understanding of our methodology, presented in Chapter

Three. This chapter also includes morphology and optic flow fundamentals. We also

discuss our reasoning for choosing both Phase- and Wavelet-Based Optic Flow algo-

rithms to test the accuracy, efficiency, and robustness of our algorithm. Overall, this

chapter documents the basic theory that we exploit in the design and development

of our Feature Guided algorithm.
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III. Methodology

3.1 Introduction

We require that our Feature Guided Image Registration algorithm be auto-

matic, general, robust, efficient, and accurate. First, the algorithm must be able

to function with little human interaction (automatic). Second, it must be general

enough to handle images of different topographical data. Third, it must be robust

enough to handle translated images in the presence of noise. Fourth, it is important

that our algorithm be computationally efficient, since the long term goal is use in a

‘real-time’ navigation system. Finally, it is important that the algorithm be accu-

rate, since it will be used to aid in navigation. To meet these needs we propose a

Wavelet-Based Feature Extraction algorithm.

Wavelet transforms are natural edge detectors and can be used to accurately

detect features. We discussed why wavelet transforms are useful in image registration

problems in Section 2.4. Our proposed algorithm uses the redundant discrete wavelet

transform (RDWT) to detect persistent wavelet maxima. It then uses morphological

imaging to group maxima into objects. The objects are evaluated so that each has the

characteristics of area, centroid, and bounding box. These characteristics are used

to define regions of interest (ROI). The initial image is decomposed into subimages

based on the ROIs. The same ROIs are imposed on the next image in the sequence,

so that the same area is covered in the subimages. These subimages may be processed

in parallel to decrease computational time. The corresponding subimages are then

used in a Phase-Based Optic Flow algorithm from Gautama and Van Hulle [10]

and a Wavelet-Based Translation algorithm from Brown [5] to calculate pixel shifts

for synthetic data and velocities from a real video stream. The testing and overall

assessment of these algorithms is presented in Chapter Four.
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3.2 Wavelet-Based Feature Extraction

The purpose of Wavelet-Based Feature Extraction is to highlight the image

areas that have dominant features and then calculate the pixel shift in that area. By

calculating estimates of the pixel shift in multiple regions, we average the estimates

and improve accuracy. We also determine the amount of texture in a image by the

number of features we extract. Our algorithm states when insufficient persistent

features are present, which enables it to indicate that an unreliable pixel shift may

have been estimated.

It is critical, for accurate velocity estimation, that proper features are extracted

by our algorithm. The criteria of Li and Zhou [20] are used. To ensure that our al-

gorithm is robust, spacing is required around the feature. If there is not enough

area around the feature it may not be present in the sequential image and an in-

valid estimate is calculated. The bounding boxes must be large enough to ensure

that accurate translation estimates are computed and yet small enough to minimize

computational complexity. Thus, each bounding box is proportional to the feature,

making the box size adaptive. The same bounding boxes are compared in the two

sequential images to ensure consistency.

The features extracted are based on edges, which are naturally regions of high

contract. Since edges are usually spread throughout the image, we assume that the

clustering of wavelet coefficients is distributed similarly. To meet Li and Zhou’s [20]

final criteria, the features must be unique, which is possible, since the wavelet co-

efficients are naturally parsimonious, and we threshold the coefficients and reduce

background noise levels. This procedure implies that the same unique feature is

extracted even in the presence of noise.

3.2.1 Pre-Filtering the Data Imagery. Since one of the main goals of our

algorithm is to increase computational efficiency of the Phase-Based Optic Flow and

Wavelet-Based Translation Algorithms, we apply a high quality compression filter
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to the video stream data. This filter reduces the size of each frame by a two to

one ratio in both directions by lowpass filtering and downsampling, which decreases

the size of our original image from 480 × 720 to 240 × 360 as shown in Figure 3.1.

The images are also converted into grayscale. Our synthetic data, which is used

for validation of our algorithm, does not need to be filtered, because it is already a

grayscale 256× 256 noise-free image.
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Figure 3.1. Original Images. (a) Original Image, which also has a third color
dimension which is not shown here. (b) Original Image after filtering
and size reduction.

3.2.2 Selection of Wavelets Basis for Feature Extraction. To validate the

robustness of our algorithm, we analyze various wavelet decompositions to determine

which cause more features to be extracted. For these tests we use the “Lenna” image.

Table 3.1 shows some of the 45 Daubechies wavelets and the 15 biorthogonal wavelets

used in our analysis. The ‘db2’ wavelet extracts the largest number of features and

produces low computational complexity. Thus, it is the choice for our feature based

algorithm.

3.2.3 Shift-Invariant Wavelet Transform. Since it is critical that we extract

the same features at every iteration and maintain feature consistency from frame to

frame, the shift-invariant wavelet transform is the obvious choice for decomposing
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Table 3.1. Number of features per wavelet decomposition.

Wavelet Name Number of Features Number of Features with Noise
db1 8 3
db2 23 2

db3 18 2
db4 22 2
db5 22 2
db6 21 2
db7 21 2
db8 21 2
db9 19 2
db10 20 2
db15 15 2
db20 16 2
db25 12 3
db30 10 2
db35 9 3
db40 10 2
db45 18 2
bior1.1 8 2
bior1.5 8 2
bior2.8 17 2
bior3.9 20 2
bior4.4 20 2
bior5.5 20 2
bior6.8 20 2
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Table 3.2. Number of features per RDWT iteration.

Number of Iterations Number of Features
2 23
3 23
4 23

our image. The redundant discrete wavelet transform we use provides the shift

invariant properties we desire. Figure 3.2 shows the filter bank representation of the

RDWT. Notice that there is no down-sampling, which ensures that each subband of

the image stays the same size.

co[n]

f[n] H(z)

G(z)

H(z2)

G(z2)

H(z4)

G(z4)

c2(n)

d2(n)

c1(n)

d1(n)

d3(n)

c3(n)

Figure 3.2. Filter bank representation of the Redundant Discrete Wavelet Trans-
form.

It is important that we compute the redundant discrete wavelet for a sufficient

number of iterations to determine that a feature is dominant. Table 3.2 shows that

the use of two, three, and four iterations yields 23 features for the Lenna image.

Three is chosen because it extracts the same number of features as four iterations

without extra computation. Two was not chosen, because two iterations did not

seem to guarantee that the features would be present in the future iterations.

3.2.4 Subband Choices. The HL and LH subbands, described in Section 2.4,

are chosen for analysis because they are the most useful for image registration. The

HH subband is not used, because it preserves high frequency components and is

therefore the most suspectable to noise, which is an undesirable trait. The LL
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subband is undesirable because the transform coefficients are not sparse. The LH

subband tends to preserve the horizontal features, while the HL preserves the vertical

features. These subbands prove useful for calculating the pixel shifts and velocities.

3.2.5 Lowpass Filter. The next step in our process is to apply a lowpass

filter to the LH and HL subbands. The purpose of the lowpass filter is to smooth the

edges of the image. It also allows for the correction of the slight shift in the images

due to the odd length wavelet filter that may be chosen. When an odd length wavelet

filter is chosen, the RDWT shifts one pixel due to padding in the circular convolving

process. This shift proves to be problematic in the next section of our algorithm. If

subsequent iterations of the image are shifted, it is difficult to combine the subbands

and extract features. The lowpass filter also helps reduce the noise that may still be

present in the image, which improves the robustness of our algorithm, since we hope

to extract the proper features regardless of noise level.

3.2.6 Threshold and Binary Masking. Once the noise has been reduced

and the redundant discrete wavelet transform shifts accounted for, we hope to reduce

the complexity of our wavelet representation. Since wavelets are known for being

parsimonious, it is unnecessary to keep all coefficients. We apply a threshold to the

coefficients, and only retain those coefficients whose magnitude exceeds the threshold.

We use the Guo, Odegard, et al., threshold of 3σ [11], where σ is the standard

deviation given by

σ =

√

1

n

∑

((xi − x̄)2), (3.1)

where

x̄ =
1

n

∑

(xi). (3.2)

The xi are the wavelet coefficients, and n is equal to the number of coefficients.

This threshold minimizes the effects of noise, since it is likely that the significant
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coefficients exceed the threshold even with noise added. Since the 3σ value may

be different for each iteration of the RDWT, there may be discrepancies in the

number of significant coefficients retained. To solve this problem, we use Guo and

Odegard’s threshold [11] on the first subband and determine the number of significant

coefficients. We then adjust the threshold at subsequent scales to ensure that a

consistent number of coefficients remain throughout the iterations.

The significant coefficients are then set to ‘1’ and all others are set to ‘0’. This

binary masking is very computationally efficient and further reduces the effects of

noise. For our purposes we are only concerned with the existence of a feature and

not its magnitude. The subbands of the different RDWT iterations are then logically

anded together. If a ‘1’ is present in all iterations of the RDWT then it is assumed

that it is a dominant feature, due to persistence.
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Figure 3.3. The anded HL subband after the threshold is applied and the signifi-
cant coefficients are set to ‘1’ .

3.2.7 Morphological Imaging. At this point, we have binary subbands with

‘1’s at each of the feature pixels. We now use morphological processing to group

these pixels into true features. Our morphological imaging takes place in four steps:

1. The first step in our morphological processing is to open the image with a

structural element. For all of our test data we used shape = disk and radius =
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15. This process removes any independent ‘1’ that cannot be contained in our

structural object as shown in Figure 3.4.

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  0 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  0 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  0 0 1 0 0 0 0 0 0 0 0 0 0 

R=5

Figure 3.4. Size and the shape required to make a group of ones into an object.
For this figure the radius is 5; for our algorithm it is 15.

2. The second step is to find an approximation of the background. This is done by

using the MatLab Version 12.1 surf command. The surf command provides

the characteristics of the background, which enables us to eliminate indepen-

dent ‘1’s that may be present due to noise or other distortions.

3. The third step is to find all connecting ‘1’s and label them. Different labelling

techniques are used for the different subbands. The HL subband uses a two

dimensional labelling technique, bwlabel, since the algorithm provided by Mat-

Lab Version 12.1 is designed to calculate two-dimensional objects in the vertical

direction most efficiently. However, the multidimensional technique, bwlabeln,

is faster calculating horizontal two-dimensional objects. Therefore, this com-

mand is used in the LH subband. This process defines the connectivity that

an object must have to be considered an object.

4. Finally, properties of the objects are formed. Once all the objects are labelled

and identified, it is possible to find centroids and bounding boxes. The centroid
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is the x and y coordinate of the center point of the feature. The bounding box

defines the smallest rectangular region that encompasses the feature.

If no objects were created during the morphological process, our algorithm tells

the user that zero features were extracted, and the image is considered ‘bad’. Our

algorithm then proceeds to skip the following steps and goes straight into the Phase-

Based Optic Flow algorithm or the Wavelet-Based Optic Flow algorithm. The ability

to determine the absence of features or texture is a key contribution, and allows us

to determine when estimates are not meaningful.

3.2.8 Creating Regions of Interest (ROI). By creating objects out of the

groupings of ‘1’s, we are able to find the centroid and the bounding box of each fea-

ture. We take the dimensions of the bounding box and ensure that they are at least

60× 90, depending on image size. This minimum size is determined experimentally

with the Phase-Based Optic Flow algorithm. The image is then cropped as defined

by the bounding box. The minimum size ensures that we detect a considerable

translation, while cropping the bounding boxes ensures that we gain computational

efficiency from creating subimages. Figure 3.5 shows three significant features ex-

tracted using our algorithm on frame zero of the video stream data.

Once the ROIs are determined from the reference image, the same areas are

selected on the sequential image, which allows our algorithm to be feature guided.

We extracted the features from the reference image and then found ROIs. These

ROIs are then imposed on the sequential image so that we can crop the image. The

separate subimages can then be used in the optic flow algorithms. This Feature-

Based algorithm provides for increased computational speed, since the images are

significantly smaller and can be processed in parallel. Figure 3.6 shows the ROI of

feature two (as defined in Figure 3.5 (c)) in the original image (a) and the sequential

image (b).
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Figure 3.5. Subimages cropped from the original image. (a) Original Image. (b)
First Feature. (c) Second Feature. (d) Third Feature.
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Figure 3.6. Two Regions of Interest to be compared. (a) Original ROI of feature
two on the reference image. (b) Original ROI of feature two imposed
on the input image.

3.2.9 Additional Parameters that Modify our Code. To ensure that proper

translation is calculated, we make sure that proper feature extraction takes place.

Two additional parameters are taken into account when designing our algorithm.

They are determining what is a ‘good’ and ‘bad’ image. A good image is one that

has one or more extractable features with adequate area, and a ‘bad’ image has none.

Table 3.3 show the translation estimates along with the number of features and their

area. It can clearly be seen that area is an important criteria for extracting ‘good’

features for estimating translation.

Table 3.3 is created using the Feature Guided Brown algorithm [5]. From this

table, we see that the area helps determine if we have a valid feature, and thus we

modify our code accordingly. Logical arguments are implemented as follows: we

first determine if more than five features are present. If more than five features are

present we implement area constraints. We test to see if we have at least two features

of area 25 pixels or greater. If this is true, then we precede with our algorithm as

stated above. If this is false, we determine if we have at least two features of area

10 pixels or greater. If this argument is true, we then precede with the rest of our

algorithm. If these criteria are false, then we use all the features extracted regardless
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Table 3.3. Number of Features Extracted along with their corresponding areas and
translation estimates in the x and y direction.

Feature Numbers Area Tx Ty
1 49 2 0
2 43 2 2
3 30 3 0
4 18 2 2
5 17 2 2
6 17 2 2
7 13 2 2
8 12 2 2
9 11 2 2
10 10 2 2
11 5 2 2
12 4 2 2
13 4 2 2
14 3 2 2
15 3 2 2
16 2 2 2
17 1 2 2
18 1 2 2
19 1 2 2
20 1 2 2
21 1 2 1
22 1 1 0
23 1 75 0
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of area. This procedure allows the algorithm to make an estimate in all cases, but

it places emphasis on the most significant features.

The next modification of our algorithm is imposed by the constraints of the

Phase-Based Optic Flow algorithm. This algorithm uses a quadrature Gabor filter

bank, which produces edge effects of approximately 20 pixels and can produce ‘ugly’

features. ‘Ugly’ features are defined as features contained mostly in the 20 pixel

outer region corrupted by the Gabor filter. To compensate for this problem we add

an exclusion region around the original image, which is done by imposing ‘0’s around

the border in the binary image. Figure 3.7 shows examples of an ‘ugly’ and a ‘bad’

image.
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Figure 3.7. Two frames of the video stream data that show the ugly and the bad
features. (a) ‘Ugly’ feature for frame 850 of the video stream data.
Features are only located near the edges where the edge effects due
to the Gabor Filter produce invalid estimates. (b) ‘Bad’ or no fea-
ture image from frame 584 of the video stream data. No features are
present.
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3.3 Wavelet-Based Translation Algorithm

The Wavelet-Based Translation algorithm that we use to validate our Fea-

ture Guided algorithm is based heavily on Brown [5]. With our feature extraction

methodology we create subimages from the original image based on features being

present, which allows us to reduce Brown’s [5] computational complexity by

1. The ability to process the images in parallel.

2. The fact that a smaller number of coefficient can be processed to yield the

same accuracy.

The following describes the basic methodology of Brown’s [5] algorithm and how it

is used in our Feature Guided algorithm.

3.3.1 Number of Significant Coefficients. The number of significant coeffi-

cients (N) is defined by the user. It usually varies from 10 to 250 [5]. These are the

coefficients that are used to form our translation estimate. Computational complex-

ity increases as N 2; since our subimages are small (typically 60×90), the speed up

of Brown’s [5] algorithm is significant.

3.3.2 RDWT. One iteration of the RDWT is performed on the images.

One iteration is considered adequate in this situation, because each subband is the

same as the original size. There is no gain in computational efficiency, since each

further iteration is the same size as the original image.

3.3.3 Masking. Masking for this algorithm is done differently than in our

algorithm: N is determined by how many significant coefficients are chosen, and not

by 3σ as in our algorithm. This enables the Brown algorithm [5] to be more flexible

but does not offer the automation of our algorithm.

3.3.4 Comparison of Location. The location of the most significant coef-

ficient in the reference subimage is compared to all the N significant coefficients in
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the input subimage, which produces N translation estimates. This procedure is then

repeated for the middle and the 10th largest significant coefficient, which gives us 3N

translation estimates per subband. As mentioned in Section 3.3.2, our N is typically

smaller.

3.3.5 Correlations. Correlations are performed for the 3N estimates cal-

culated above. The coefficients are circularly shifted and compared. The highest

correlation is considered the best estimate, which is done with the LH and the HL

subbands separately. A Pearson Correlation in the spatial domain is then done with

the two highest correlating estimates in each subband [5]. The estimate with the

highest Pearson Correlation is the final pixel shift estimate. This estimate is used in

the velocity calculation presented later in this chapter.

3.4 Phase-Base Optic Flow Algorithm

As discussed in Section 2.7.1, phase-based optic flow algorithms are considered

among the more accurate, but their computational complexity is a disadvantage.

Since we have reduced the image sizes considerably and process the subimages in

parallel, we are able to compute a faster and more effective result. Our Phase-Based

algorithm is based heavily on Gautama and Van Hulle [10] with a few adjustments.

3.4.1 Methodology for Optic Flow Algorithm.

3.4.1.1 Linearity Threshold. The linearity threshold is very critical

to the second step of Gautama and Van Hulle’s algorithm [10]. It determines criteria

for the rejection of non-linear phase components. It is extremely important that the

phase be linear, since most spatial information is located in the phase. If the phase

becomes distorted (i.e., non-linear) our estimates are corrupted. As this constraint

tightens, the deviation between component velocities decreases (desirable) and the

density coverage of the optic flow field also decreases (undesirable). The coverage
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defines the percentage of the image which is able to give valid velocity estimates.

For our experiment, a linearity threshold of .01 is used. This threshold is used in

Gautama and Van Hulle’s algorithm [10], and it is logical to keep it consistent so

that we make valid comparisons.

3.4.1.2 Optic Flow. The optic flow is computed with the methodol-

ogy explained in Section 2.6. An additional constraint is placed on the optic flow

calculation to reduce edge effects. An offset is calculated to match where the Gaus-

sian envelope drops below 10 percent, which is necessary because of the quadrature

Gabor filter banks characteristics described in Section 2.7.1. The Gabor filters pro-

duce edge effects, and since we know the spatial location of the effects, we are able

to compensate. Figure 3.8 shows the calculations of the optic flow vectors of feature

two. The offset can be clearly seen.
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Figure 3.8. Optic Flow Vectors. (a) Original ROI of feature two on the reference
image. (b) Calculated Optic Flow Vectors.

3.5 Velocity Computation

Once the x and y velocity components from the Phase-Based Optic Flow and

the Wavelet-Based Translation algorithm are calculated, this information can be

combined with the field of vision (FOV) to calculate the final velocity vector.
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The FOV and the pixel resolution are predetermined theoretically and then

recalculated with real data to provide an accurate estimate. These parameters are

determined by the characteristics of the camera being used.

We chose to sample the video data at 15 frames per second. We are still

able to calculate the proper estimates with downsampling. If we were to use the

full 30 frames per second of data, we would calculate invalid velocities, since the

displacement, due to compression, is too small to notice (less than .1 pixel per

second).

3.5.1 Methodology for Altitude Calculation. Our video stream data is

gathered using the Global Positioning system (GPS). Our data file contains altitude

in terms of Mean Sea Level (MSL). For our algorithm we are interested in the object-

to-camera altitude. Thus we must convert the MSL altitude to terrain-to-platform

altitude, which can be done by taking the MSL altitude and subtracting the height

of the terrain, with respect to mean sea level.

3.5.2 Velocity calculation. The velocity calculation is based on the param-

eters defined above. The actual calculation is

fxp = altitude× tan

(

FOVx
px

)

(3.3)

and

fyp = altitude× tan

(

FOVy
py

)

, (3.4)

where fp is the displacement in the field of motion in the respective direction and p

is the number of pixels in the respective directions. The velocity is then given by

velocity =
√

(fxp × Vx)2 + (fyp × Vy)2 × rateframe ×
3600

5280
, (3.5)
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where V are the velocity components. The constant at the end of Equation 3.5

converts the velocity into miles per hour: 3600 is equal to the number of seconds in

an hour and 5280 is the number of feet in a mile.

An additional criterion is used to help reduce further errors. We include an-

other parameter called the margin of error,φ. Where φ is

φ = arctan(
Vx
Vy

), (3.6)

This margin is based of finding the largest velocity vector and validating that vector

and those within the margin of error. First, we estimate the probability density func-

tion of the velocity by computing a histogram. We then find the maximum velocity

component. The angle of this maximum velocity component is our base angle. The

margin of error is then added and subtracted to this maximum. This calculation

is based on the assumption that noise vectors are relatively small compared to the

true velocity vectors. These are considered valid angles and the corresponding field

of motion calculations are inserted in the velocity of Equation 3.5.

3.6 Summary

In this chapter, we describe our methodology for providing a more computa-

tionally effective algorithm for determining optic flow pixel shifts. Our algorithm

utilizes the redundant discrete wavelet transform, binary masking, and morpholog-

ical processing for feature extraction and allows us to break apart the images into

subimages so that they can be processed faster and in parallel. We then process the

subimages with both Phase- and Wavelet-Based Optic Flow Algorithms.

In the next chapter, we discuss the performance of our Feature Guided Phase-

and Wavelet-Based Optic Flow Algorithms and compare them to the original Phase-

and Wavelet-Based Optic Flow Algorithms. We also discuss the design trade-offs

that are made and why.

3-18



IV. Results

4.1 Introduction

The purpose of this chapter is to analyze specified data sets to demonstrate the

validity and performance of our algorithm. First, we give a general description of our

validation study, followed by an explanation of why certain measures of performance

and parameters are used. The results of the Phase-Based Optic Flow algorithm

versus the Feature Guided Phase-Based Optic Flow algorithm are then presented.

Next, the Wavelet-Based Optic Flow algorithm versus the Feature Guided Wavelet-

Based algorithm results are documented, which demonstrates how our algorithm

improves accuracy. We then test the robustness of the Feature Guided algorithms

with various noise and pixel displacements. Finally, we present an overall assessment

of how the Feature Guided algorithms meet the criteria, set forth in Chapter Two,

of being robust, automatic, and computationally effective.

4.2 Discussion of Validation Study

The validation study compares our Feature Guided algorithm to the original

Optic Flow algorithms by processing test images and varying algorithm parameters.

The purpose of our research is to create a robust, automatic, and computationally

effective algorithm. The validation study results presented here demonstrate that

our algorithm meets these criteria better than the original algorithms. Our vali-

dation study compares the original Phase- and Wavelet-Based Algorithms to the

Feature Guided Phase- and Wavelet-Based Algorithms. We choose to validate our

algorithm’s flexibility by applying it to two different optic flow algorithms. We show

how our algorithm increases the accuracy and robustness in each case.

4.2.1 Test Images. The validation images of our algorithms consist of

a synthetic test image “Lenna” and a 60 second video stream of real data. The
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synthetic image is shown in Figure 4.1 (a); it is a 256 × 256 pixel 8-bit grayscale

image. The “Lenna” image is used in Brown’s research [5], thus giving us a logical

test choice for making performance comparisons. The video stream data is captured

from a JAVA miniDV camcorder mounted to a Zenair CH-701 aircraft flying north

of Dayton, Ohio at approximately 1,000 feet. The video stream data are originally

color, but are converted into a 240×360 8-bit pixel grayscale image before processing

by our algorithm. Figure 4.1(b) shows frame zero of the video stream data.

(a) (b)

Figure 4.1. Test Images. (a) “Lenna” synthetic image. (b) First frame of the video
stream data.

4.2.2 Peak Signal-to-Noise Ratio. To validate our algorithm with the

synthetic data, it is necessary to add white Gaussian noise to simulate real conditions.

We use Peak Signal-to-Noise Ratio (PSNR) to define how the signal is degraded by

noise. PSNR is

PSNR = 20 log





max |xi|
√

∑

i

(xi−x̂i)2

N



 , (4.1)
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where the xi represent the grayscale values of the pixel in the original image, the x̂i

are the grayscale values of the noisy image, and N is the number of pixels in the

original image. For 8-bit images, max|xi| = 255.

For our validation study, PSNR values of 22 dB and 28 dB are created. Images

that have a value of approximately 30 dB or higher are considered to have little noise

degradation from the original image. The value of 22 dB is chosen for comparison

to the work of Brown, where images with PSNR of 22 dB are studied [5], and 28

dB is chosen because at higher PSNR values the Brown algorithm is documented to

have nearly perfect translation estimation performance [5]. In this case our Feature

Guided algorithm would only provide faster computation, with no increase in accu-

racy. Figures 4.2 (a) and (b) show the “Lenna” image with a PSNR of 28 dB and

22 dB respectively. It can be seen that the PSNR is inversely proportional to the

level of noise in an image; the higher the PSNR value, the less noise present in the

image, as clearly seen in Figure 4.2.

(a) (b)

Figure 4.2. Examples of PSNR values for the test images. (a) Lenna image with
28 dB PSNR. (b) Lenna image with 22 dB PSNR.
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4.3 Experiment

Our experiment starts by testing the accuracy of our algorithm. We validate

our algorithm by testing the original algorithms versus the Feature Guided algo-

rithms. To show robustness with respect to noise, we demonstrate accuracy results

with noise of 28 dB and 22 dB. We take feature guided algorithms and compare their

accuracy with respect to pixel shifts.

4.3.1 Synthetic Data. A general standard in validating new algorithms

uses synthetic data. Since Brown [5] uses the “Lenna” image, it is logical that we

do the same. The synthetic data allows us to test for accuracy and robustness with

known solutions.

4.3.1.1 Accuracy and Robustness Test with Respect to Noise. To vali-

date the accuracy of our Feature Guided Registration algorithm, we test the original

algorithms versus the Feature Guided algorithms with image PSNRs of 28 dB and

22 dB. We show the results for 100 trials. Figure 4.3 (a) and (c) show results for a

displacement of two pixels in the x direction. Figures 4.3 (b) and (d) show results

for a displacement of two pixels in the y direction. Figure 4.4 shows the same results

at 22 dB. Table 4.1 gives additional statistics for the results of Figures 4.3 and 4.4.

Table 4.1 shows that the Feature Guided algorithms outperform the original algo-

rithms. While the standard deviation does not change significantly for the Guatama

and Van Hulle algorithm, it has a large variation for the Brown algorithm. The

graphs in Figure 4.3 show that the Brown algorithm estimates are either extremely

accurate or extremely inaccurate, as verified by the standard deviation. It can also

be seen in Figure 4.3, Figure 4.4, and Table 4.1 that the Guatama and Van Hulle

algorithm is more robust to noise.

4.3.1.2 Accuracy Test with Respect to Pixel Shifts. It is clearly seen

from Figure 4.3 and Figure 4.4 that the Feature Guided algorithms outperform

4-4



0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(a) X Displacement (b) Y Displacement

0 10 20 30 40 50 60 70 80 90 100
−300

−250

−200

−150

−100

−50

0

50

0 10 20 30 40 50 60 70 80 90 100
−300

−250

−200

−150

−100

−50

0

50

(c) X Displacement (d) Y Displacement

Figure 4.3. Evaluation of Accuracy of pixel shift of two with PSNR of 28. (a) Fea-
ture Guided Gautama and Van Hulle algorithm (dashed line) versus
Original Gautama and Van Hulle algorithm (dotted line). (b) Fea-
ture Guided Gautama and Van Hulle algorithm (dashed line) versus
Original Gautama and Van Hulle algorithm (dotted line). (c) Fea-
ture Guided Brown algorithm(dashed line) versus Original Brown al-
gorithm(dotted line). (d) Feature Guided Brown algorithm (dashed
line) versus Original Brown algorithm (dotted line).
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Figure 4.4. Evaluation of pixel shift of two with PSNR of 22 dB. (a) Feature
Guided Gautama and Van Hulle algorithm (dashed line) versus Orig-
inal Gautama and Van Hulle algorithm (dotted line). (b) Feature
Guided Gautama and Van Hulle algorithm (dashed line) versus Orig-
inal Gautama and Van Hulle algorithm (dotted line). (c) Feature
Guided Brown algorithm (dashed line) versus Original Brown algo-
rithm (dotted line). (d) Feature Guided Brown algorithm (dashed
line) versus Original Brown algorithm (dotted line).
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Table 4.1. Graph Statistics. True displacement is equal to two.

Algorithm Mean Standard Deviation
PSNR = 28dB X Direction X Direction

Gautama and Van Hulle 1.7171 0.1067
Feature Guided Gautama and Van Hulle 2.0408 0.1057

Brown -0.4900 25.6099
Feature Guided Brown 2.0050 0.0500

Y Direction Y Direction
Gautama and Van Hulle 1.5460 0.1823

Feature Guided Gautama and Van Hulle 1.8221 0.0998
Brown -0.7100 25.6051

Feature Guided Brown 1.9400 0.2490
PSNR = 22dB X Direction X Direction

Gautama and Van Hulle 1.5404 0.1623
Feature Guided Gautama and Van Hulle 1.5692 0.1022

Brown -23.3890 76.7416
Feature Guided Brown -0.5600 23.3890

Y Direction Y Direction
Gautama and Van Hulle 1.4135 0.2921

Feature Guided Gautama and Van Hulle 1.4946 0.1186
Brown -7.7300 60.7299

Feature Guided Brown 3.3250 27.5794
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the original algorithms. Therefore, in this section we perform and report on more

extensive validations of the Feature Guided Algorithms. The previous test results

show that the Feature Guided Guatama and Van Hulle algorithm is more robust to

noise deformation. We now evaluate accuracy with respect to pixel shift.

A pixel shift of more than ten is unlikely; therefore, we test shifts from zero

to ten. We begin by evaluating the Feature Guided Algorithms over 100 trials, to

ensure consistency. No additive White Gaussian Noise is used in these trials. For

Figure 4.5 (a) we keep our y displacement at zero while we vary our x displacement

from zero to ten in integer values. A total of 1100 trials are executed for this figure.

The same technique is used for Figure 4.5 (b), except the y displacement is varied

while the x displacement is kept at zero.
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Figure 4.5. Calculated displacement versus actual displacement. The Feature
Guided Brown algorithm is represented by squares. The Feature
Guided Gautama and Van Hulle algorithm is represented by circles.
The truth data is represented by the line.

Figure 4.5 shows that the Feature Guided Phase-Based Optic Flow algorithm

does not yield efficient estimates of pixel shifts for more than a three pixel displace-

ment. The Feature Guided Brown algorithm is more accurate with respect to large

pixel shifts. Table 4.2 shows the results of the displacement tests.
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Table 4.2. Displacement Graphs Statistics.

True Data(x,y) Vx Vy Tx Ty
0,0 0.995 0 0 0
1,0 0.907 -0.0059 0.995 0
2,0 1.8052 -0.0161 1.99 0
3,0 2.5713 -0.1989 2.9851 0
4,0 2.9548 -0.2883 3.9801 0
5,0 2.2147 0.2667 4.9751 0
6,0 2.4789 -0.2249 5.9701 0
7,0 -0.1545 0.3165 6.9652 0
8,0 -1.3943 1.3522 7.9602 0
9,0 -1.2227 0.9449 8.9552 0
10,0 -1.5524 -0.9094 9.9502 0
0,1 0.0025 -0.8942 0 0
0,2 0.005 -1.7816 0 1.99
0,3 0.0704 -2.6411 0 2.9851
0,4 0.1207 -3.3851 0 3.9801
0,5 0.2861 -3.2062 0 4.9751
0,6 0.3777 -2.701 0 5.9701
0,7 0.2027 -0.5708 0 6.9652
0,8 -0.0657 -0.2165 0 7.9602
0,9 -0.112 1.601 0 8.9552
0,10 0.0019 0.6594 0 9.9502
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4.3.2 Video Stream Data Analysis. As shown in the previous section, the

Feature Guided algorithm shows promising results; thus, we evaluate it with video

stream data. We test the Feature Guided algorithms against each other using the

video steam data. Sixty seconds of the video stream data are evaluated. The large

standard deviations of the Feature Guided Brown algorithm, as shown in Table 4.1,

now affect the performance. The true estimates and the estimates from the Feature

Guided Gautama and Van Hulle algorithm are barely seen due to the inaccurate

evaluations from the Brown algorithm as shown in Figure 4.6. Figures 4.7 and 4.8

take a closer look at frames 0 to 15 and 265 to 280 so that we see a set of valid and

invalid estimates.
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Figure 4.6. Estimated Velocities. The truth is represented by the solid line, the Feature Guided Wavelet-Based algo-
rithm is represented by the dashed line, and the Phase-Based Optic Flow algorithm is represented by the
dotted line.
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4.3.2.1 Valid Estimates. For the first second of our video stream

data we have a ‘good’ image as defined in Section 3.2.9. We take a closer look at

this section so that we can evaluate our algorithm with a ‘good’ image. Figure 4.7

shows the algorithm’s performance over the first 15 frames, which is equal to one

second of video data. Our Feature Guided algorithm reveals that we have between

seven and twelve valid features in this sequence. The partial list of the features

and their calculated velocities are shown in Table 4.4. It is interesting to note that

these 15 frames have at least seven valid features, which leads to the hypothesis

that one image could be processed to find the regions of interest. These regions

could be applied to more than one sequential image, and reasonable results could

still be obtained, which would allow our algorithm to be even more computationally

effective.
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Figure 4.7. Estimated Velocities. The truth is represented by the straight line, the
Feature Guided Wavelet-Based algorithm is represented by the dashed
line, and the Phase-Based Optic Flow algorithm is represented by the
dotted line.
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Table 4.3. Valid Estimate Statistics.

Algorithm Mean Stand Deviation
Feature Guided Brown 83.0612 14.9653

Feature Guided Gautama and Van Hulle 86.6872 6.7061
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Table 4.4. Statistics of first second of Video Stream data. Note: Not all features are shown in this table.

Frame Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Mean σ
0-2 64.8557 64.8557 97.2836 64.8557 64.8557 97.286 97.286 81.07055 17.3344
2-4 64.8557 97.2836 32.4279 97.2836 97.2836 97.2836 133.353 88.53871 31.6847
4-6 61.9023 32.4279 97.2836 64.8557 97.2836 32.4279 97.2836 73.19414 29.51174
6-8 61.9023 97.2836 97.2836 129.7114 97.2836 97.2836 97.2836 92.860925 21.3758
8-10 61.9023 97.2836 97.2836 32.4279 97.2836 97.2836 64.8557 78.33147 25.80499
10-12 61.9023 64.8557 97.2836 97.2836 64.8557 97.2836 97.2836 88.80744 23.29623
12-14 64.8557 64.8557 97.2836 97.2836 32.4279 97.2836 64.8557 72.06192 27.0321
14-16 64.8557 61.9023 97.2836 97.2836 64.8557 32.4279 97.2836 77.53153 22.87979
16-18 61.9023 61.9023 97.2836 129.7114 32.4279 102.0885 64.8557 82.74877 29.44232
18-20 61.9023 61.9023 97.2836 97.2836 64.8557 64.8557 97.2836 82.74877 18.46803
20-22 64.8557 64.8557 97.2836 98.2836 64.8557 102.0885 97.2836 87.11929 16.76669
22-24 61.9023 97.2836 97.2836 129.7114 64.8557 97.2836 97.2836 93.35233 20.04954
24-26 61.9023 129.7114 129.7114 64.8557 97.2836 129.7114 102.0885 98.02317 28.6158
26-28 64.8557 97.2836 97.2836 64.8557 129.7114 129.7114 97.2836 97.2836 24.51315
28-30 71.8626 162.1393 129.7114 97.2836 129.7114 129.7114 129.7114 118.4268 27.98583
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Further evaluation of our Feature Guided Brown algorithm is needed. All

constraints and error correction in the algorithm are based on Gautama and Van

Hulle [10], which is an appropriate approach since we want to ensure a valid com-

parison. However, we know that the Feature Guided Brown algorithm is capable of

making extremely wrong estimates, due to its correlation process as defined in Sec-

tion 3.3.5. We can compensate for this possibility by using our standard deviation

statistic.

4.3.2.2 Invalid Estimates with velocity correcting Code. The Feature

Guided Brown algorithm proves to be either very accurate or extremely inaccurate.

A simple velocity correcting code could be added to increase the performance of

the Feature Guided Brown algorithm. The correcting code could use the standard

deviation of the velocities as its error metric. If we decrease the standard deviation,

we may be able to increase the accuracy; however, this decreases our ability to

interpret different topographical data. Therefore, we chose to apply our correcting

code to the averaged velocities instead of the feature velocities. For these reasons,

more analysis should be performed. We seek to determine if this approach improves

the performance of the Feature Guided Brown algorithm. From Figure 4.6 it is

obvious that frames 265 to 280 have extremely poor estimates. Figure 4.8 provides

a closer look.

Table 4.5. Invalid Estimate Statistics.

Algorithm Mean Stand Deviation
Feature Guided Brown 1763.2 2190.2

Feature Guided Gautama and Van Hulle 55.0139 20.3177

Our Velocity Correcting code assumes that the initial five estimates are correct.

Next, we determine the standard deviation for each frame. If it is above 10 we take

the mean of the previous five estimates and use that as our value. The improvement

for frames 268 to 280 is shown in Figure 4.9 and Table 4.6. The overall improvements
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Figure 4.8. Estimated Velocities for Frames 265 to 280. The Feature Guided
Brown algorithm is represented by squares, the Feature Guided Gau-
tama, and Van Hulle algorithm is represented by circles, and the GPS
data is represented by the straight line.

are shown in Figure 4.10. The mean and standard deviation calculations are greatly

improved with the use of this velocity correction code.

Table 4.6. Invalid Data Corrected Statistics.

Algorithm Mean Stand Deviation
Feature Guided Brown 92.9687 2.9354e-014

Feature Guided Gautama and Van Hulle 55.0139 20.3177
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Figure 4.9. Estimated Velocities for Frames 265 to 280. The Feature Guided
Brown algorithm is represented by squares, the Feature Guided Gau-
tama and Van Hulle algorithm is represented by circles, and the GPS
data is represented by the straight line.
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Figure 4.10. Estimated Velocities. The Feature Guided Brown algorithm is represented by the dashed line, the Feature
Guided Gautama, and Van Hulle algorithm is represented by the dotted line. The GPS data is represented
by the solid line.
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4.3.2.3 Automation. As stated in Chapter Three, our algorithm de-

termines when there is not enough texture present to guarantee valid estimates of

pixel shifts. Frames where an inaccurate estimate may have taken place are ana-

lyzed. The Feature Guided Brown algorithm yields a standard deviation of 281.5818,

and the Gautama and Van Hulle algorithm yields a standard deviation of 8.7640.

We expect to have a standard deviation less than 3 due to our truth data. These

calculated standard deviations are far worse than our statistics presented in Table

4.4. Approximately 30 of the 379 uncertain calculated velocities for the Feature

Guided Brown algorithm fall within 10 miles per hour of the calculated mean ve-

locity, 65.5280. Approximately 258 of the 379 uncertain calculated velocities for the

Feature Guided Gautama and Van Hulle algorithm fall within 10 miles per hour

of the calculated mean velocity, 70.8236. This indicates that the images that are

determined not to have enough texture do not yield accurate estimates.

4.4 Summary

Overall, we provide a validation study that shows the increased accuracy and

robustness of our Feature Guided algorithms. For the synthetic data tests, the Fea-

ture Guided Brown algorithm estimates more accurate pixel displacement. However,

it lacks the robustness to noise that the Feature Guided Gautama and Van Hulle

algorithm displays. The Feature Guided Brown Algorithms also lacks the accuracy

of the Feature Guided Gautama and Van Hulle algorithm with respect to the Video

Stream Data. This result is expected since the Feature Guided Brown algorithm can

only estimate integer values.

The automation criteria prove to be effective for providing a valid confidence

measurement for accuracy. However, the Feature Guided Brown algorithm has ad-

ditional accuracy problems, with respect to the video stream data, even with the

velocity correcting code of Section 4.3.2.2. Therefore, it is important to understand

the requirements of the application and choose the appropriate optic-flow algorithm.
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V. Discussion and Future Work

5.1 Contributions of this Thesis

In this thesis, we improve efficiency, robustness, and computational efficiency

of preexisting Phase- and Wavelet-Based Algorithms by adding our Feature Guided

algorithm. Through an innovative technique, we define image ‘texture’, so that we

can determine the validity of our estimates. Through the use of the redundant

discrete wavelet transform, binary thresholding and masking, and morphological

imaging, we decompose a wide range of images into subimages based upon the feature

locality. The Feature Guided Brown algorithm proves to be more accurate with

respect to integer pixel displacement. However, it lacks accuracy for non-integer

pixel shifts and robustness to noise that the Feature Guided Gautama and Van

Hulle algorithm displays. Recall from Section 1.1 that the long term goal of this

research effort is to improve the accuracy and efficiency of optic flow algorithms,

so that they may be used for Air Force navigational systems. Based on the results

presented, the Feature Guided algorithm has moved us closer to reaching our goal.

5.2 Potential for Future Research

Even though our algorithm realizes significant gains in the optic flow algo-

rithm’s accuracy and efficiency, there are still many aspects that must be resolved

before we can use this technique in navigation. The topics presented below are areas

that need to be researched.

5.2.1 Other Image Registration Algorithms. Our Feature Guided algorithm

could provide improved accuracy and efficiency for many other image registration

algorithms. For example, it could be implemented as a front-end to a super-resolution

algorithm. Most super-resolution algorithms are interested in specific objects in an
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image. Our feature guided algorithm can find and register these objects of interest,

thus significantly reducing the computational load on the super-resolution algorithm.

Our algorithm could also be directly applied to other image registration al-

gorithms, such as Manfra’s algorithm [23]. Manfra’s algorithm uses the continu-

ous wavelet transform to compute more accurate translations, however, efficiency

is sacrificed. The combination of the Feature Guided algorithm and Manfra’s algo-

rithm [23] could increase registration accuracy while significantly decreasing compu-

tational complexity.

5.2.2 Use of Subbands. Currently our algorithms use the wavelet subband

to find regions of interest (ROI). Those ROIs are then imposed on the original im-

ages. One variation of our algorithm would be to impose those ROIs on the subbands

themselves. This would increase the computational efficiency of our translation es-

timates. Since the High-Low Subband preserves vertical edges, it would be ideal for

estimating displacements in the x direction. The Low-High Subband could then be

used to determine the displacements in the y direction. Since the subbands contains

less information than the original image, it would be less computationally expensive

to compare the respective subbands to each other.

5.2.3 Finding Redundant Objects. The Feature Guided algorithm deter-

mines where a feature is located. It is logical to assume that if it is located in the

middle of an image, then it will also occur in the next series of frames. With this

information, it is possible to define “redundant features” as those likely to appear

in the next set of frames. This a priori information on feature location can be used

instead of redefining the feature locations for each image. This procedure would be

more computationally effective than our current Feature Guided Algorithm, which

only imposes the regions of interest on one image and begins a new feature for every

frame.
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5.2.4 Dealing with Video Stream Data Rotations. To reach our long term

goal of having an image registration algorithm sufficiently efficient and accurate to

use in a navigation system, we must take platform rotations into account. Traditional

registration algorithms do not account for the aircraft rotations that are likely to

occur. The objects on the ground may have distorted depths and velocities due

to aircraft maneuvers. We currently use the estimates from multiple features to

form a single velocity estimate. However, if the sensor platform is rotating, different

features should be at different velocities. The individual features estimates could be

combined to estimate the rotations of the aircraft.
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